Decoding and encoding of visual patterns using magnetoencephalographic data represented in manifolds

نویسندگان

  • Po-Chih Kuo
  • Yong-Sheng Chen
  • Li-Fen Chen
  • Jen-Chuen Hsieh
چکیده

Visual decoding and encoding are crucial aspects in investigating the representation of visual information in the human brain. This paper proposes a bidirectional model for decoding and encoding of visual stimulus based on manifold representation of the temporal and spatial information extracted from magnetoencephalographic data. In the proposed decoding process, principal component analysis is applied to extract temporal principal components (TPCs) from the visual cortical activity estimated by a beamforming method. The spatial distribution of each TPC is in a high-dimensional space and can be mapped to the corresponding spatiotemporal component (STC) on a low-dimensional manifold. Once the linear mapping between the STC and the wavelet coefficients of the stimulus image is determined, the decoding process can synthesize an image resembling the stimulus image. The encoding process is performed by reversing the mapping or transformation in the decoding model and can predict the spatiotemporal brain activity from a stimulus image. In our experiments using visual stimuli containing eleven combinations of checkerboard patches, the information of spatial layout in the stimulus image was revealed in the embedded manifold. The correlation between the reconstructed and original images was 0.71 and the correlation map between the predicted and original brain activity was highly correlated to the map between the original brain activity for different stimuli (r=0.89). These results suggest that the temporal component is important in visual processing and manifolds can well represent the information related to visual perception.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encoding and decoding in fMRI

Over the past decade fMRI researchers have developed increasingly sensitive techniques for analyzing the information represented in BOLD activity. The most popular of these techniques is linear classification, a simple technique for decoding information about experimental stimuli or tasks from patterns of activity across an array of voxels. A more recent development is the voxel-based encoding ...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

A Novel Patch-Based Digital Signature

In this paper a new patch-based digital signature (DS) is proposed. The proposed approach similar to steganography methods hides the secure message in a host image. However, it uses a patch-based key to encode/decode the data like cryptography approaches. Both the host image and key patches are randomly initialized. The proposed approach consists of encoding and decoding algorithms. The encodin...

متن کامل

Decoding magnetoencephalographic rhythmic activity using spectrospatial information

We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural source...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 102 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2014